Package: rrecsys 0.9.7.2
Ludovik Çoba
rrecsys: Environment for Evaluating Recommender Systems
Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore and coverage measures. The package (Coba, et al.(2017) <doi:10.1007/978-3-319-60042-0_36>) is intended for rapid prototyping of recommendation algorithms and education purposes.
Authors:
rrecsys_0.9.7.2.tar.gz
rrecsys_0.9.7.2.zip(r-4.5)rrecsys_0.9.7.2.zip(r-4.4)rrecsys_0.9.7.2.zip(r-4.3)
rrecsys_0.9.7.2.tgz(r-4.4-x86_64)rrecsys_0.9.7.2.tgz(r-4.4-arm64)rrecsys_0.9.7.2.tgz(r-4.3-x86_64)rrecsys_0.9.7.2.tgz(r-4.3-arm64)
rrecsys_0.9.7.2.tar.gz(r-4.5-noble)rrecsys_0.9.7.2.tar.gz(r-4.4-noble)
rrecsys.pdf |rrecsys.html✨
rrecsys/json (API)
# Install 'rrecsys' in R: |
install.packages('rrecsys', repos = c('https://ludovikcoba.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ludovikcoba/rrecsys/issues
- ml100k - Movielens 100K Dataset
- ml100k_array - Movielens 100K Dataset
- mlLatest100k - Movielens Latest
Last updated 3 years agofrom:8511f2770c. Checks:OK: 4 NOTE: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | NOTE | Nov 07 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 07 2024 |
R-4.4-win-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 07 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 07 2024 |
R-4.3-win-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-x86_64 | OK | Nov 07 2024 |
R-4.3-mac-aarch64 | OK | Nov 07 2024 |
Exports:coercecolAveragescolRatingsdataChartdefineDataevalChartevalModelevalPredevalRecgetAUChistogramncolnrownumRatingspredictrankScorerecommendHPRrecommendMFresultsrowAveragesrowRatingsrrecsysrrecsysRegistrysetStoppingCriteriashowshowDeltaErrorshowStoppingCriteriasparsitysummary
Dependencies:clicolorspaceevaluatefansifarverggplot2gluegtablehighrisobandknitrlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppregistryrlangscalestibbleutf8vctrsviridisLitewithrxfunyaml
A data set in rrecsys
Rendered froma1_dataset.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
Bayesian Personalized Ranking
Rendered fromb6_BPR.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-16
Dispacher and registry
Rendered fromc1_dispacherregistry.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-18
Evaluation
Rendered froma2_evaluation.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-16
Extendind rrecsys
Rendered fromd1_extend.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
Introduction and Installing rrecsys
Rendered froma0_intro.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
Item-based k-nearest neighbors
Rendered fromb2_IBCF.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
Non-personalized recommendations
Rendered fromb1_nonpersonalized.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
Predicting & recommending
Rendered fromc2_predictrecommend.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-18
Simon Funk's SVD
Rendered fromb4_funkSVD.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2016-06-26
User-based k-nearest neighbors
Rendered fromb3_UBCF.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-16
Weighted Alternated Least Squares
Rendered fromb5_wALS.Rmd
usingknitr::knitr
on Nov 07 2024.Last update: 2017-08-18
Started: 2017-08-16
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Dataset class. | colAverages colRatings numRatings rowAverages rowRatings show,_ds-method sparsity sparsity,_ds-method summary,_ds-method _ds _ds-class |
Baseline algorithms exploiting global/item and user averages. | algAverageClass algAverageClass-class show,algAverageClass-method |
Bayesian Personalized Ranking based model. | BPRclass BPRclass-class show,BPRclass-method |
Visualization of data characteristics. | dataChart |
Dataset class. | coerce,dataSet,matrix-method colAverages,dataSet-method colRatings,dataSet-method dataSet dataSet-class dim,dataSet-method ncol,dataSet-method nrow,dataSet-method numRatings,dataSet-method rowAverages,dataSet-method rowRatings,dataSet-method [,dataSet,ANY,ANY,missing-method |
Define dataset. | defineData defineData,matrix-method |
Normalized Discounted Cumulative Gain | eval_nDCG |
Visualization of data characteristics. | evalChart |
Creating the evaluation model. | evalModel evalModel,dataSet-method evalModel,sparseDataSet-method evalModel,_ds-method |
Evaluation model. | evalModel-class show,evalModel-method |
Evaluates the requested prediction algorithm. | evalPred evalPred,evalModel,list-method evalPred,evalModel-method |
Evaluates the requested recommendation algorithm. | evalRec evalRec,evalModel,list-method evalRec,evalModel-method |
Evaluation results. | evalRecResults evalRecResults-class results results,evalRecResults-method show,evalRecResults-method |
Returns the Area under the ROC curve. | getAUC getAUC,evalModel getAUC,evalModel-method |
Ratings histogram. | histogram |
Item based model. | IBclass IBclass-class show,IBclass-method |
Movielens 100K Dataset | ml100k ml100k_array |
Movielens Latest | mlLatest100k |
Popularity based model. | PPLclass PPLclass-class show,PPLclass-method |
Generate predictions. | predict predict, slopeOneclass predict,algAverageClass-method predict,BPRclass-method predict,IBclass-method predict,SVDclass-method predict,UBclass-method predict,wALSclass-method |
Rank Score | rankScore |
Generate recommendation. | recommendHPR recommendMF |
Create a recommender system. | rrecsys rrecsys,_ds-method rrecsysRegistry |
Set stopping criteria. | setStoppingCriteria showDeltaError showStoppingCriteria |
Slope One model. | predict,slopeOneClass-method show,slopeOneClass-method slopeOneClass slopeOneClass-class |
Dataset class for tuples (user, item, rating). | coerce,sparseDataSet,matrix-method colAverages,sparseDataSet-method colRatings,sparseDataSet-method dim,sparseDataSet-method ncol,sparseDataSet-method nrow,sparseDataSet-method numRatings,sparseDataSet-method rowAverages,sparseDataSet-method rowRatings,sparseDataSet-method sparseDataSet sparseDataSet-class [,sparseDataSet,ANY,ANY,missing-method |
SVD model. | show,SVDclass-method SVDclass SVDclass-class |
Item based model. | show,UBclass-method UBclass UBclass-class |
Weighted Alternating Least Squares based model. | show,wALSclass-method wALSclass wALSclass-class |