Package: rrecsys 0.9.7.2

Ludovik Çoba

rrecsys: Environment for Evaluating Recommender Systems

Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore and coverage measures. The package (Coba, et al.(2017) <doi:10.1007/978-3-319-60042-0_36>) is intended for rapid prototyping of recommendation algorithms and education purposes.

Authors:Ludovik Çoba [aut, cre, cph], Markus Zanker [ctb], Panagiotis Symeonidis [ctb]

rrecsys_0.9.7.2.tar.gz
rrecsys_0.9.7.2.zip(r-4.5)rrecsys_0.9.7.2.zip(r-4.4)rrecsys_0.9.7.2.zip(r-4.3)
rrecsys_0.9.7.2.tgz(r-4.4-x86_64)rrecsys_0.9.7.2.tgz(r-4.4-arm64)rrecsys_0.9.7.2.tgz(r-4.3-x86_64)rrecsys_0.9.7.2.tgz(r-4.3-arm64)
rrecsys_0.9.7.2.tar.gz(r-4.5-noble)rrecsys_0.9.7.2.tar.gz(r-4.4-noble)
rrecsys.pdf |rrecsys.html
rrecsys/json (API)

# Install 'rrecsys' in R:
install.packages('rrecsys', repos = c('https://ludovikcoba.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ludovikcoba/rrecsys/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

6.84 score 23 stars 25 scripts 267 downloads 1 mentions 29 exports 35 dependencies

Last updated 3 years agofrom:8511f2770c. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64NOTENov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024
R-4.4-win-x86_64NOTENov 07 2024
R-4.4-mac-x86_64NOTENov 07 2024
R-4.4-mac-aarch64NOTENov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:coercecolAveragescolRatingsdataChartdefineDataevalChartevalModelevalPredevalRecgetAUChistogramncolnrownumRatingspredictrankScorerecommendHPRrecommendMFresultsrowAveragesrowRatingsrrecsysrrecsysRegistrysetStoppingCriteriashowshowDeltaErrorshowStoppingCriteriasparsitysummary

Dependencies:clicolorspaceevaluatefansifarverggplot2gluegtablehighrisobandknitrlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppregistryrlangscalestibbleutf8vctrsviridisLitewithrxfunyaml

A data set in rrecsys

Rendered froma1_dataset.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

Bayesian Personalized Ranking

Rendered fromb6_BPR.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-16

Dispacher and registry

Rendered fromc1_dispacherregistry.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-18

Evaluation

Rendered froma2_evaluation.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-16

Extendind rrecsys

Rendered fromd1_extend.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

Introduction and Installing rrecsys

Rendered froma0_intro.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

Item-based k-nearest neighbors

Rendered fromb2_IBCF.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

Non-personalized recommendations

Rendered fromb1_nonpersonalized.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

Predicting & recommending

Rendered fromc2_predictrecommend.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-18

Simon Funk's SVD

Rendered fromb4_funkSVD.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2016-06-26

User-based k-nearest neighbors

Rendered fromb3_UBCF.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-16

Weighted Alternated Least Squares

Rendered fromb5_wALS.Rmdusingknitr::knitron Nov 07 2024.

Last update: 2017-08-18
Started: 2017-08-16

Readme and manuals

Help Manual

Help pageTopics
Dataset class.colAverages colRatings numRatings rowAverages rowRatings show,_ds-method sparsity sparsity,_ds-method summary,_ds-method _ds _ds-class
Baseline algorithms exploiting global/item and user averages.algAverageClass algAverageClass-class show,algAverageClass-method
Bayesian Personalized Ranking based model.BPRclass BPRclass-class show,BPRclass-method
Visualization of data characteristics.dataChart
Dataset class.coerce,dataSet,matrix-method colAverages,dataSet-method colRatings,dataSet-method dataSet dataSet-class dim,dataSet-method ncol,dataSet-method nrow,dataSet-method numRatings,dataSet-method rowAverages,dataSet-method rowRatings,dataSet-method [,dataSet,ANY,ANY,missing-method
Define dataset.defineData defineData,matrix-method
Normalized Discounted Cumulative Gaineval_nDCG
Visualization of data characteristics.evalChart
Creating the evaluation model.evalModel evalModel,dataSet-method evalModel,sparseDataSet-method evalModel,_ds-method
Evaluation model.evalModel-class show,evalModel-method
Evaluates the requested prediction algorithm.evalPred evalPred,evalModel,list-method evalPred,evalModel-method
Evaluates the requested recommendation algorithm.evalRec evalRec,evalModel,list-method evalRec,evalModel-method
Evaluation results.evalRecResults evalRecResults-class results results,evalRecResults-method show,evalRecResults-method
Returns the Area under the ROC curve.getAUC getAUC,evalModel getAUC,evalModel-method
Ratings histogram.histogram
Item based model.IBclass IBclass-class show,IBclass-method
Movielens 100K Datasetml100k ml100k_array
Movielens LatestmlLatest100k
Popularity based model.PPLclass PPLclass-class show,PPLclass-method
Generate predictions.predict predict, slopeOneclass predict,algAverageClass-method predict,BPRclass-method predict,IBclass-method predict,SVDclass-method predict,UBclass-method predict,wALSclass-method
Rank ScorerankScore
Generate recommendation.recommendHPR recommendMF
Create a recommender system.rrecsys rrecsys,_ds-method rrecsysRegistry
Set stopping criteria.setStoppingCriteria showDeltaError showStoppingCriteria
Slope One model.predict,slopeOneClass-method show,slopeOneClass-method slopeOneClass slopeOneClass-class
Dataset class for tuples (user, item, rating).coerce,sparseDataSet,matrix-method colAverages,sparseDataSet-method colRatings,sparseDataSet-method dim,sparseDataSet-method ncol,sparseDataSet-method nrow,sparseDataSet-method numRatings,sparseDataSet-method rowAverages,sparseDataSet-method rowRatings,sparseDataSet-method sparseDataSet sparseDataSet-class [,sparseDataSet,ANY,ANY,missing-method
SVD model.show,SVDclass-method SVDclass SVDclass-class
Item based model.show,UBclass-method UBclass UBclass-class
Weighted Alternating Least Squares based model.show,wALSclass-method wALSclass wALSclass-class